Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 207
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Pharmacol Rep ; 76(1): 154-170, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38019413

RESUMO

BACKGROUND: Despite great advances in our understanding of the impact of cannabinoids on human organism, many of their properties still remain undetermined, including their potential antineoplastic effects. This study was designed to assess the anti-proliferative and cytotoxic effects of AM1172 (a hydrolysis-resistant endocannabinoid analog that inhibits anandamide cellular uptake) administered alone and in combinations with docetaxel (DOCX), paclitaxel (PACX), mitoxantrone (MTX) and cisplatin (CDDP) on various human malignant melanoma A375, FM55P, SK-MEL 28 and FM55M2 cell lines. MATERIALS: In the MTT, LDH, and BrdU assays, the potency and safety of AM1172 when administered alone and in combinations with DOCX, PACX, MTX, and CDDP were determined. RESULTS: The isobolographic analysis revealed that combinations of AM1172 with PACX, DOCX, MTX, and CDDP exerted additive interactions, except for a combination of AM1172 with PACX in primary melanoma A375 cell line, for which synergy was observed (*p<0.05). Nevertheless, AM1172 when administered alone produced cytotoxic effects on healthy human melanocytes (HEMa-LP) and human keratinocytes (HaCaT), which unfortunately limits its potential therapeutic utility. CONCLUSIONS: AM1172 cannot be used separately as a chemotherapeutic drug, but it can be combined with PACX, DOCX, MTX, and CDDP, offering additive interactions in terms of the anti-proliferative effects in various malignant melanoma cell lines.


Assuntos
Antineoplásicos , Ácidos Araquidônicos , Benzamidas , Melanoma , Alcamidas Poli-Insaturadas , Humanos , Endocanabinoides/farmacologia , Melanoma/tratamento farmacológico , Hidrólise , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Cisplatino/farmacologia , Paclitaxel , Mitoxantrona/uso terapêutico , Linhagem Celular Tumoral
2.
Pharmacol Rep ; 76(1): 216-222, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38015370

RESUMO

BACKGROUND: Anticonvulsant effects of imperatorin (IMP) have been experimentally confirmed earlier, but no information is available on the interaction profiles of this naturally occurring coumarin when combined with novel antiseizure medication (ASMs). This study aimed to determine the effects of IMP on the anticonvulsant effects of lacosamide (LCM), oxcarbazepine (OXC), pregabalin (PGB), and topiramate (TPM) in the maximal electroshock-induced seizure (MES) model in mice. METHODS: The anticonvulsant effects exerted by novel ASMs (LCM, OXC, PGB, and TPM) when combined with constant doses of IMP (25 and 50 mg/kg) underwent isobolographic transformation to precisely classify the observed interactions in the mouse MES model. Total brain concentrations of ASMs were measured with high-pressure liquid chromatography to exclude the pharmacokinetic nature of interactions among IMP and the tested ASMs. RESULTS: IMP (50 mg/kg) significantly enhanced (p < 0.01) the anticonvulsant potency of LCM, OXC, PGB, and TPM in the mouse MES model. IMP (25 mg/kg) mildly potentiated the anticonvulsant action of LCM, OXC, PGB, and TPM, but no statistical significance was reported for these combinations. The isobolographic transformation of data from the MES test revealed that the interactions of novel ASMs with IMP were additive. Moreover, IMP (50 mg/kg) did not affect the total brain content of any of the novel ASMs in experimental mice. CONCLUSIONS: The additive interactions of IMP with LCM, OXC, PGB, and TPM in the mouse MES model accompanied by no pharmacokinetic changes in the total brain content of ASMs are worthy of recommendation for further studies.


Assuntos
Anticonvulsivantes , Furocumarinas , Animais , Camundongos , Anticonvulsivantes/uso terapêutico , Eletrochoque , Convulsões/tratamento farmacológico , Furocumarinas/farmacologia , Furocumarinas/uso terapêutico , Oxcarbazepina/uso terapêutico , Topiramato/farmacologia , Topiramato/uso terapêutico , Lacosamida , Encéfalo , Modelos Animais de Doenças , Interações Medicamentosas , Relação Dose-Resposta a Droga
3.
Int J Mol Sci ; 24(21)2023 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-37958494

RESUMO

Gastric cancer is the most common cancer and remains the leading cause of cancer death worldwide. In this study, the anticancer action of magnoflorine isolated via counter-current chromatography from the methanolic extract of Berberis vulgaris root against gastric cancer in models of primary ACC-201 and AGS and metastatic MKN-74 and NCI-N87 cell lines was analyzed. Cell viability and proliferation were tested through the use of MTT and BrdU tests, respectively. Cell cycle progression and apoptosis were evaluated using flow cytometry. The interaction of magnoflorine and docetaxel has been examined through isobolographic analysis. Moreover, potential toxicity was verified in zebrafish in an in vivo model. Gastric cancer cell lines revealed different responses to magnoflorine treatment with regard to viability/proliferation, apoptosis induction and cell cycle inhibition without any undesirable changes in the development of larval zebrafish at the tested concentrations. What is more, magnoflorine in combination with docetaxel produced an additive pharmacological interaction in all studied gastric cancer cell lines, which may suggest a complementary mechanism of action of both compounds. Taken together, these findings provide a foundation for the possibility of magnoflorine as a potential therapeutic approach for gastric cancer and merits further investigation, which may pave the way for clinical uses of magnoflorine.


Assuntos
Adenocarcinoma , Neoplasias Gástricas , Animais , Humanos , Docetaxel/farmacologia , Docetaxel/uso terapêutico , Neoplasias Gástricas/patologia , Peixe-Zebra , Proliferação de Células , Linhagem Celular Tumoral , Apoptose , Adenocarcinoma/tratamento farmacológico
4.
Pharmacol Rep ; 75(6): 1533-1543, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37821793

RESUMO

BACKGROUND: Overwhelming evidence indicates that some naturally occurring coumarins and terpenes are widely used in folk medicine due to their various therapeutic effects affecting the brain. Antiseizure medications (ASMs) are the principal treatment option for epilepsy patients, although some novel strategies based on naturally occurring substances are intensively investigated. This study was aimed at determining the influence of isopimpinellin (ISOP-a coumarin) when administered either separately or in combination with borneol (BOR-a monoterpenoid), on the antiseizure potencies of four classic ASMs (carbamazepine (CBZ), phenytoin (PHT), phenobarbital (PB), and valproate (VPA)) in the mouse model of maximal electroshock-induced (MES) tonic-clonic seizures. MATERIALS: Tonic-clonic seizures were evoked experimentally in mice after systemic (ip) administration of the respective doses of ISOP, BOR, and classic ASMs. Interactions for two-drug (ISOP + a classic ASM) and three-drug (ISOP + BOR + a classic ASM) mixtures were assessed isobolographically in the mouse MES model. RESULTS: ISOP (administered alone) had no impact on the anticonvulsant potencies of four classic ASMs. Due to the isobolographic transformation of data, the combination of ISOP + VPA exerted an antagonistic interaction, whereas the two-drug mixtures of ISOP + CBZ, ISOP + PHT, and ISOP + PB produced additive interactions in the mouse MES model. The three-drug combinations of ISOP + BOR with CBZ and PHT produced additive interactions, while the three-drug combinations of ISOP + BOR with PB and VPA exerted synergistic interactions in the mouse MES model. CONCLUSIONS: The most intriguing interaction was that for ISOP + VPA, for which the addition of BOR evoked a transition from antagonism to synergy in the mouse MES model.


Assuntos
Anticonvulsivantes , Convulsões , Humanos , Animais , Camundongos , Anticonvulsivantes/farmacologia , Anticonvulsivantes/uso terapêutico , Interações Medicamentosas , Convulsões/tratamento farmacológico , Carbamazepina/farmacologia , Fenobarbital/farmacologia , Fenobarbital/uso terapêutico , Fenitoína , Eletrochoque , Combinação de Medicamentos , Modelos Animais de Doenças , Relação Dose-Resposta a Droga
5.
Molecules ; 28(13)2023 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-37446948

RESUMO

The main aim of the current project was to investigate the effect of the linker size in 4-alkyl-5-aryl-1,2,4-triazole-3-thione derivatives, known as a group of antiepileptic drug candidates, on their affinity towards voltage-gated sodium channels (VGSCs). The rationale of the study was based both on the SAR observations and docking simulations of the interactions between the designed ligands and the binding site of human VGSC. HYDE docking scores, which describe hydrogen bonding, desolvation, and hydrophobic effects, obtained for 5-[(3-chlorophenyl)ethyl]-4-butyl/hexyl-1,2,4-triazole-3-thiones, justified their beneficial sodium channel blocking activity. The results of docking simulations were verified using a radioligand binding assay with [3H]batrachotoxin. Unexpectedly, although the investigated triazole-based compounds acted as VGSC ligands, their affinities were lower than those of the respective analogs containing shorter alkyl linkers. Since numerous sodium channel blockers are recognized as antiepileptic agents, the obtained 1,2,4-triazole derivatives were examined for antiepileptic potential using an experimental model of tonic-clonic seizures in mice. Median effective doses (ED50) of the compounds examined in MES test reached 96.6 ± 14.8 mg/kg, while their median toxic doses (TD50), obtained in the rotarod test, were even as high as 710.5 ± 47.4 mg/kg.


Assuntos
Anticonvulsivantes , Tionas , Camundongos , Humanos , Animais , Anticonvulsivantes/farmacologia , Anticonvulsivantes/química , Tionas/farmacologia , Ligantes , Triazóis/química
6.
Pharmacol Rep ; 75(5): 1115-1125, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37515699

RESUMO

Melanoma is a highly aggressive and life-threatening form of skin cancer that accounts for a significant proportion of cancer-related deaths worldwide. Although conventional cancer therapies, such as surgical excision, chemotherapy, and radiation, have been used to treat malignant melanoma, their efficacy is often limited due to the development of resistance and adverse side effects. Therefore, there is a growing interest in developing alternative treatment options for melanoma that are more effective and less toxic. Terpenes, a diverse group of naturally occurring compounds of plant origin, have emerged as potential anticancer agents due to their ability to inhibit tumor growth and induce apoptosis in cancer cells. In this review, the current understanding of the anticancer effects of terpenes (including, thymoquinone, ß-elemene, carvacrol, limonene, α-pinene, ß-caryophyllene, perillyl alcohol, taxol, betulinic acid, α-bisabolol, ursolic acid, linalool, lupeol, and artesunate) was summarized, with a special focus on their potential as therapeutic agents for malignant melanoma.


Assuntos
Antineoplásicos , Melanoma , Neoplasias Cutâneas , Humanos , Terpenos/farmacologia , Terpenos/uso terapêutico , Limoneno , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Melanoma/tratamento farmacológico , Neoplasias Cutâneas/tratamento farmacológico
7.
Cells ; 12(12)2023 06 09.
Artigo em Inglês | MEDLINE | ID: mdl-37371063

RESUMO

(1) The treatment of metastatic or drug-resistant melanoma is still a significant therapeutic problem. The aim of this study was to evaluate the anticancer potential of daphnetin (7,8-dihydroxycoumarin) and its combinations with five different cytostatic drugs (mitoxantrone, docetaxel, vemurafenib, epirubicin and cisplatin). (2) The viability, proliferation and cytotoxicity of daphnetin against four human malignant melanoma cell lines were evaluated. The interactions were assessed using isobolographic analysis for the combinations of daphnetin with each of the five cytostatic drugs. (3) Daphnetin showed anticancer activity against malignant melanoma, with IC50 values ranging from 40.48 ± 10.90 µM to 183.97 ± 18.82 µM, depending on the cell line. The combination of daphnetin with either vemurafenib or epirubicin showed an antagonistic interaction. Moreover, additive interactions were observed for the combinations of daphnetin with cisplatin and docetaxel. The most desirable synergistic interactions for human melanoma metastatic cell lines were observed for the combination of daphnetin with mitoxantrone. (4) The obtained results suggest that daphnetin should not be combined with vemurafenib or epirubicin in the treatment of malignant melanoma due to the abolition of their anticancer effects. The combination of daphnetin with mitoxantrone is beneficial in the treatment of metastatic melanoma due to their synergistic interaction.


Assuntos
Citostáticos , Melanoma , Humanos , Vemurafenib/uso terapêutico , Citostáticos/farmacologia , Docetaxel/farmacologia , Docetaxel/uso terapêutico , Cisplatino/farmacologia , Cisplatino/uso terapêutico , Mitoxantrona/uso terapêutico , Epirubicina , Melanoma/tratamento farmacológico , Cumarínicos/farmacologia
8.
Molecules ; 28(9)2023 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-37175299

RESUMO

(1) Malignant melanomas are dangerous skin cancers, and the treatment of melanomas with various cytostatic drugs often causes side effects and after their prolonged use resistance to these drugs appears. The aim of this study was to evaluate the anticancer effects of esculetin (a simple coumarin) and to assess pharmacodynamic interactions between esculetin and six commonly used cytostatic drugs (cisplatin, epirubicin, docetaxel, paclitaxel, mitoxantrone and vemurafenib) using an isobolographic analysis. (2) The experiments were carried out on four human malignant melanoma cell lines (FM55P, A375, FM55M2 and SK-MEL28). The effects of esculetin on viability, cell proliferation and cytotoxicity were verified in the range of concentrations of 2-200 µM. (3) Esculetin inhibited, in a dose-dependent manner, malignant melanoma cell viability and proliferation. The IC50 for esculetin ranged from 18.20 ± 2.93 to 120.64 ± 30.39 µM depending on the melanoma cell lines used. The combinations of esculetin with epirubicin and vemurafenib showed antagonistic interactions, the combinations of esculetin with cisplatin, docetaxel and paclitaxel showed additive interactions. For the combinations of esculetin with mitoxantrone, the isobolographic analysis displayed synergy. (4) In the treatment of malignant melanoma, esculetin should not be combined with epirubicin or vemurafenib, due to the reduction of their anticancer effects, while the synergistic interactions (esculetin + mitoxantrone) deserve a preclinical recommendation as a beneficial combination during anticancer therapy.


Assuntos
Citostáticos , Melanoma , Humanos , Cisplatino/farmacologia , Docetaxel , Epirubicina/farmacologia , Vemurafenib , Mitoxantrona , Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Paclitaxel/farmacologia , Melanoma/tratamento farmacológico , Linhagem Celular , Linhagem Celular Tumoral
9.
Int J Mol Sci ; 24(8)2023 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-37108758

RESUMO

Drug-induced ototoxicity resulting from therapy with aminoglycoside antibiotics and loop diuretics is one of the main well-known causes of hearing loss in patients. Unfortunately, no specific protection and prevention from hearing loss are recommended for these patients. This study aimed at evaluating the ototoxic effects produced by mixtures of amikacin (AMI, an aminoglycoside antibiotic) and furosemide (FUR, a loop diuretic) in the mouse model as the hearing threshold decreased by 20% and 50% using auditory brainstem responses (ABRs). Ototoxicity was produced by the combinations of a constant dose of AMI (500 mg/kg; i.p.) on FUR-induced hearing threshold decreases, and a fixed dose of FUR (30 mg/kg; i.p.) on AMI-induced hearing threshold decreases, which were determined in two sets of experiments. Additionally, the effects of N-acetyl-L-cysteine (NAC; 500 mg/kg; i.p.) on the hearing threshold decrease of 20% and 50% were determined by means of an isobolographic transformation of interactions to detect the otoprotective action of NAC in mice. The results indicate that the influence of a constant dose of AMI on FUR-induced hearing threshold decreases was more ototoxic in experimental mice than a fixed dose of FUR on AMI-induced ototoxicity. Moreover, NAC reversed the AMI-induced, but not FUR-induced, hearing threshold decreases in this mouse model of hearing loss. NAC could be considered an otoprotectant in the prevention of hearing loss in patients receiving AMI alone and in combination with FUR.


Assuntos
Surdez , Perda Auditiva , Ototoxicidade , Camundongos , Animais , Amicacina/toxicidade , Furosemida/efeitos adversos , Acetilcisteína/efeitos adversos , Perda Auditiva/induzido quimicamente , Perda Auditiva/tratamento farmacológico , Perda Auditiva/prevenção & controle , Antibacterianos/efeitos adversos , Audição , Aminoglicosídeos , Limiar Auditivo
10.
Int J Mol Sci ; 24(3)2023 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-36768937

RESUMO

Varenicline (VAR) is a partial agonist of brain α4ß2 nicotinic acetylcholine receptors recommended as a first line pharmacotherapy for smoking cessation. The aim of this study was to examine whether VAR affects the protective activity of four classic antiseizure medications, i.e., carbamazepine (CBZ), phenobarbital (PB), phenytoin (PHT), and valproate (VPA) on maximal electroshock (MES)-induced seizures, which may serve as an experimental model of human-generalized tonic-clonic seizures in mice. VAR administered intraperitoneally (i.p.) at a subthreshold dose of 0.5 mg/kg decreased the protective activity of CBZ against MES-induced convulsions, increasing its median effective dose (ED50) from 10.92 ± 1.0 to 18.15 ± 1.73 mg/kg (p < 0.01). The effect of VAR was dose-dependent because a lower dose of VAR (0.25 mg/kg) failed to antagonize the protective activity of CBZ. VAR administered at the subthreshold dose of 0.5 mg/kg had no impact on the protective activity of PB, PHT, and VPA in the mouse MES model. The inhibitory effect of VAR on the protective activity of CBZ against tonic-clonic convulsions most likely resulted from the pharmacodynamic mechanism(s) and was not associated with the changes in total brain concentrations of CBZ. VAR-evoked alterations in the anticonvulsive activity of CBZ may be of serious concern for epileptic tobacco smokers.


Assuntos
Anticonvulsivantes , Convulsões , Humanos , Camundongos , Animais , Anticonvulsivantes/farmacologia , Anticonvulsivantes/uso terapêutico , Vareniclina/farmacologia , Vareniclina/uso terapêutico , Eletrochoque/efeitos adversos , Convulsões/tratamento farmacológico , Convulsões/etiologia , Encéfalo , Carbamazepina/farmacologia , Fenobarbital/farmacologia , Fenobarbital/uso terapêutico , Ácido Valproico/farmacologia , Fenitoína , Relação Dose-Resposta a Droga , Modelos Animais de Doenças
11.
Int J Mol Sci ; 24(2)2023 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-36674911

RESUMO

Numerous botanical drugs containing coumarins and terpenes are used in ethnomedicine all over the world for their various therapeutic properties, especially those affecting the CNS system. The treatment of epilepsy is based on antiseizure medications (ASMs), although novel strategies using naturally occurring substances with confirmed antiseizure properties are being developed nowadays. The aim of this study was to determine the anticonvulsant profiles of scoparone (a simple coumarin) and borneol (a bicyclic monoterpenoid) when administered separately and in combination, as well as their impact on the antiseizure effects of four classic ASMs (carbamazepine, phenytoin, phenobarbital and valproate) in the mouse model of maximal electroshock-induced (MES) tonic-clonic seizures. MES-induced seizures were evoked in mice receiving the respective doses of the tested natural compounds and classic ASMs (when applied alone or in combinations). Interactions for two-drug and three-drug mixtures were assessed by means of isobolographic transformation of data. Polygonograms were used to illustrate the types of interactions occurring among drugs. The total brain content of ASMs was measured in mice receiving the respective drug treatments with fluorescent polarization immunoassay. Scoparone and borneol, when administered alone, exerted anticonvulsant properties in the mouse MES model. The two-drug mixtures of scoparone with valproate, borneol with phenobarbital and borneol with valproate produced synergistic interactions in the mouse MES model, while the remaining tested two-drug mixtures produced additivity. The three-drug mixtures of scoparone + borneol with valproate and phenobarbital produced synergistic interactions in the mouse MES model. Verification of total brain concentrations of valproate and phenobarbital revealed that borneol elevated the total brain concentrations of both ASMs, while scoparone did not affect the brain content of these ASMs in mice. The synergistic interaction of scoparone with valproate observed in the mouse MES model is pharmacodynamic in nature. Borneol elevated the brain concentrations of the tested ASMs, contributing to the pharmacokinetic nature of the observed synergistic interactions with valproate and phenobarbital in the mouse MES model.


Assuntos
Anticonvulsivantes , Ácido Valproico , Animais , Camundongos , Anticonvulsivantes/uso terapêutico , Anticonvulsivantes/farmacocinética , Ácido Valproico/farmacologia , Ácido Valproico/uso terapêutico , Eletrochoque , Interações Medicamentosas , Cumarínicos/farmacologia , Cumarínicos/uso terapêutico , Convulsões/tratamento farmacológico , Convulsões/etiologia , Fenobarbital/farmacologia , Fenobarbital/uso terapêutico , Encéfalo , Modelos Animais de Doenças , Relação Dose-Resposta a Droga
12.
Int J Mol Sci ; 23(22)2022 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-36430670

RESUMO

Due to the unique structures of arvanil and olvanil, the drugs combine certain properties of both cannabinoids and vanilloids, which makes them able to stimulate both TPRV1 and CB1 receptors and causes them to be interesting agents in the setting of carcinoma treatment. The aim of this study was to investigate the cytotoxic and anti-proliferative effects of arvanil and olvanil when administered alone and in combination with cisplatin (CDDP) and mitoxantrone (MTX), using various primary (A375, FM55P) and metastatic (SK-MEL 28, FM55M2) human malignant melanoma cell lines. The results indicate that both arvanil and olvanil inhibited (dose-dependently) the viability and proliferation of various malignant melanoma cells, as demonstrated by MTT and BrdU assays. The safety profile of both arvanil and olvanil tested in human keratinocytes (HaCaT) and normal human melanocytes (HEMa-LP) revealed that neither arvanil nor olvanil caused significant cytotoxicity in HaCaT and HEMa-LP cell lines in LDH and MTT assays. Isobolographically, it was found that both arvanil and olvanil exerted additive interactions with MTX and antagonistic interactions with CDDP in the studied malignant melanoma cell lines. In conclusion, the combinations of arvanil or olvanil with MTX may be considered as a part of melanoma multi-drug therapy; however, the combination of these compounds with CDDP should be carefully considered due to the antagonistic interactions observed in the studied malignant melanoma cell lines.


Assuntos
Antineoplásicos , Melanoma , Humanos , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Linhagem Celular Tumoral , Cisplatino/farmacologia , Cisplatino/uso terapêutico , Melanoma/tratamento farmacológico , Melanoma/patologia , Mitoxantrona/farmacologia
13.
Int J Mol Sci ; 23(17)2022 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-36077036

RESUMO

The incidence of melanoma is steadily increasing worldwide. Melanoma is the most lethal skin cancer, and new therapeutic methods are being sought. Our research aimed to investigate the cytotoxic and antiproliferative effects of betulinic acid in vitro, used alone and in combination with taxanes (paclitaxel, docetaxel) in four melanoma cell lines. Isobolographic analysis allowed us to assess the interactions between these compounds. Betulinic acid had no cytotoxic effect on normal human keratinocyte HaCaT cells; the amount of LDH released by them was significantly lower compared to melanoma cell lines. The present study shows that betulinic acid significantly inhibits the growth of melanoma cell lines in vitro. The IC50 values of betulinic acid ranged from 2.21 µM to 15.94 µM against the four melanoma lines. Co-treatment of betulinic acid with paclitaxel or docetaxel generated desirable drug-drug interactions, such as an additive and additive with a tendency to synergy interactions.


Assuntos
Antineoplásicos , Melanoma , Neoplasias Cutâneas , Antineoplásicos/farmacologia , Linhagem Celular , Docetaxel/farmacologia , Humanos , Técnicas In Vitro , Melanoma/metabolismo , Paclitaxel/farmacologia , Triterpenos Pentacíclicos , Taxoides/farmacologia , Ácido Betulínico
14.
Int J Mol Sci ; 23(14)2022 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-35886997

RESUMO

Patients with Parkinson's disease are prone to a higher incidence of melanoma. Amantadine (an anti-Parkinson drug) possesses the antiproliferative potential that can be favorable when combined with other chemotherapeutics. Cisplatin (CDDP) and mitoxantrone (MTO) are drugs used in melanoma chemotherapy, but they have many side effects. (1) Clinical observations revealed a high incidence of malignant melanoma in patients with Parkinson's disease. Amantadine as an anti-Parkinson drug alleviates symptoms of Parkinson's disease and theoretically, it should have anti-melanoma properties. (2) To characterize the interaction profile for combinations of amantadine with CDDP and MTO in four human melanoma cell lines (A375, SK-MEL 28, FM55P and FM55M2), type I isobolographic analysis was used in the MTT test. (3) Amantadine produces the anti-proliferative effects in various melanoma cell lines. Flow cytometry analysis indicated that amantadine induced apoptosis and G1/S phase cell cycle arrest. Western blotting analysis showed that amantadine markedly decreased cyclin-D1 protein levels and increased p21 levels. Additionally, amantadine significantly increased the Bax/Bcl-2 ratio. The combined application of amantadine with CDDP at the fixed-ratio of 1:1 exerted an additive interaction in the four studied cell lines in the MTT test. In contrast, the combination of amantadine with MTO (ratio of 1:1) produced synergistic interaction in the FM55M2 cell line in the MTT (* p < 0.05). The combination of amantadine with MTO was also additive in the remaining tested cell lines (A375, FM55P and SK-MEL28) in the MTT test. (4) Amantadine combined with MTO exerted the most desirable synergistic interaction, as assessed isobolographically. Additionally, the exposure of melanoma cell lines to amantadine in combination with CDDP or MTO augmented the induction of apoptosis mediated by amantadine alone.


Assuntos
Citostáticos , Melanoma , Doença de Parkinson , Amantadina/farmacologia , Amantadina/uso terapêutico , Apoptose , Linhagem Celular Tumoral , Proliferação de Células , Cisplatino/farmacologia , Cisplatino/uso terapêutico , Citostáticos/farmacologia , Humanos , Melanoma/metabolismo
15.
Int J Mol Sci ; 23(12)2022 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-35743195

RESUMO

The medical application of cannabidiol (CBD) has been gathering increasing attention in recent years. This non-psychotropic cannabis-derived compound possesses antiepileptic, antipsychotic, anti-inflammatory and anxiolytic properties. Recent studies report that it also exerts antineoplastic effects in multiple types of cancers, including melanoma. In this in vitro study we tried to reveal the anticancer properties of CBD in malignant melanoma cell lines (SK-MEL 28, A375, FM55P and FM55M2) administered alone, as well as in combination with mitoxantrone (MTX) or cisplatin (CDDP). The effects of CBD on the viability of melanoma cells were measured by the MTT assay; cytotoxicity was determined in the LDH test and proliferation in the BrdU test. Moreover, the safety of CBD was tested in human keratinocytes (HaCaT) in LDH and MTT tests. Results indicate that CBD reduces the viability and proliferation of melanoma-malignant cells and exerts additive interactions with MTX. Unfortunately, CBD produced antagonistic interaction when combined with CDDP. CBD does not cause significant cytotoxicity in HaCaT cell line. In conclusion, CBD may be considered as a part of melanoma multi-drug therapy when combined with MTX. A special attention should be paid to the combination of CBD with CDDP due to the antagonistic interaction observed in the studied malignant melanoma cell lines.


Assuntos
Canabidiol , Melanoma , Canabidiol/uso terapêutico , Linhagem Celular , Cisplatino/farmacologia , Humanos , Melanoma/tratamento farmacológico , Mitoxantrona/farmacologia
16.
Int J Mol Sci ; 24(1)2022 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-36613654

RESUMO

Malignant melanoma is a skin cancer characterized by rapid development, poor prognosis and high mortality. Due to the frequent drug resistance and/or early metastases in melanoma, new therapeutic methods are urgently needed. The study aimed at assessing the cytotoxic and antiproliferative effects of scoparone and fraxetin in vitro, when used alone and in combination with three cytostatics: cisplatin, mitoxantrone, and docetaxel in four human melanoma cell lines. Our experiments showed that scoparone in the concentration range tested up to 200 µM had no significant effect on the viability of human malignant melanoma (therefore, it was not possible to evaluate it in combination with other cytostatics), while fraxetin inhibited cell proliferation with IC50 doses in the range of 32.42-73.16 µM, depending on the cell line. Isobolographic analysis allowed for the assessment of the interactions between the studied compounds. Importantly, fraxetin was not cytotoxic to normal keratinocytes (HaCaT) and melanocytes (HEMa-LP), although it slightly inhibited their viability at high concentrations. The combination of fraxetin with cisplatin and mitoxantrone showed the additive interaction, which seems to be a promising direction in melanoma therapy. Unfortunately, the combination of fraxetin with docetaxel may not be beneficial due to the antagonistic antiproliferative effect of both drugs used in the mixture.


Assuntos
Antineoplásicos , Melanoma , Humanos , Cisplatino/farmacologia , Cisplatino/uso terapêutico , Docetaxel/farmacologia , Docetaxel/uso terapêutico , Mitoxantrona/farmacologia , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Melanoma/tratamento farmacológico , Melanoma/patologia , Linhagem Celular , Linhagem Celular Tumoral
17.
Fundam Clin Pharmacol ; 36(1): 133-142, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34216038

RESUMO

Xanthotoxin (8-methoxypsoralen; XANT) is a furanocoumarin that has many biological properties, including antiepileptic activity. This study evaluated the effect of XANT on the ability of classical and novel antiepileptic drugs to prevent seizures evoked by the 6-Hz corneal stimulation-induced seizure model, which is thought to be an experimental model of psychomotor (limbic) seizures in humans. XANT (50 mg/kg, administered i.p.) significantly potentiated the anticonvulsant activity of levetiracetam and valproate, decreasing their median effective dose (ED50 ) values from 19.37 to 2.83 mg/kg (P < 0.01) for levetiracetam and from 92.89 to 44.44 mg/kg (P < 0.05) for valproate. Neither XANT (50 mg/kg) alone nor its combination with the anticonvulsant drugs (at their ED50 values from the 6-Hz test) affected motor coordination; skeletal muscular strength and long-term memory, as determined in the chimney; and grip strength and passive avoidance tests, respectively. Measurement of total brain antiepileptic drug concentrations revealed that XANT (50 mg/kg) had no impact on levetiracetam total brain concentrations, indicating the pharmacodynamic nature of interaction between these antiepileptic drugs in the mouse 6-Hz model. However, XANT (50 mg/kg, i.p.) significantly increased total brain concentrations of valproate (P < 0.01), indicating the pharmacokinetic nature of interactions between drugs. XANT in combination with levetiracetam exerts beneficial anticonvulsant pharmacodynamic interactions in the 6-Hz mouse psychomotor seizure model.


Assuntos
Anticonvulsivantes , Ácido Valproico , Animais , Anticonvulsivantes/farmacologia , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Sinergismo Farmacológico , Eletrochoque , Levetiracetam , Metoxaleno , Camundongos , Ácido Valproico/farmacologia
18.
Molecules ; 26(20)2021 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-34684834

RESUMO

Palmatine (PLT) is a natural isoquinoline alkaloid that belongs to the class of protoberberines and exhibits a wide spectrum of pharmacological and biological properties, including anti-cancer activity. The aim of our study was to isolate PLT from the roots of Berberis cretica and investigate its cytotoxic and anti-proliferative effects in vitro alone and in combination with doxorubicine (DOX) using human ER+/HER2- breast cancer cell lines. The alkaloid was purified by column chromatography filled with silica gel NP and Sephadex LH-20 resin developed in the mixture of methanol: water (50:50 v/v) that provided high-purity alkaloid for bioactivity studies. The purity of the alkaloid was confirmed by high resolution mass measurement and MS/MS fragmentation analysis in the HPLC-ESI-QTOF-MS/MS-based analysis. It was found that PLT treatment inhibited the viability and proliferation of breast cancer cells in a dose-dependent manner as demonstrated by MTT and BrdU assays. PLT showed a quite similar growth inhibition on breast cancer cells with IC50 values ranging from 5.126 to 5.805 µg/mL. In contrast, growth of normal human breast epithelial cells was not affected by PLT. The growth inhibitory activity of PLT was related to the induction of apoptosis, as determined by Annexin V/PI staining. Moreover, PLT sensitized breast cancer cells to DOX. Isobolographic analysis revealed synergistic and additive interactions between studied agents. Our studies suggest that PLT can be a potential candidate agent for preventing and treating breast cancer.


Assuntos
Antineoplásicos Fitogênicos/farmacologia , Alcaloides de Berberina/farmacologia , Neoplasias da Mama/tratamento farmacológico , Antineoplásicos Fitogênicos/administração & dosagem , Protocolos de Quimioterapia Combinada Antineoplásica/administração & dosagem , Apoptose/efeitos dos fármacos , Alcaloides de Berberina/administração & dosagem , Berberis/química , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Doxorrubicina/administração & dosagem , Sinergismo Farmacológico , Feminino , Humanos , Células MCF-7 , Fitoterapia , Raízes de Plantas/química , Plantas Medicinais/química , Receptores de Estrogênio/metabolismo
19.
Int J Mol Sci ; 22(16)2021 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-34445277

RESUMO

Breast cancer (BC) is the leading cause of death in women all over the world. Currently, combined chemotherapy with two or more agents is considered a promising anti-cancer tool to achieve better therapeutic response and to reduce therapy-related side effects. In our study, we demonstrated an antagonistic effect of cytostatic agent-cisplatin (CDDP) and histone deacetylase inhibitor: cambinol (CAM) for breast cancer cell lines with different phenotypes: estrogen receptor positive (MCF7, T47D) and triple negative (MDA-MB-231, MDA-MB-468). The type of pharmacological interaction was assessed by an isobolographic analysis. Our results showed that both agents used separately induced cell apoptosis; however, applying them in combination ameliorated antiproliferative effect for all BC cell lines indicating antagonistic interaction. Cell cycle analysis showed that CAM abolished cell cycle arrest in S phase, which was induced by CDDP. Additionally, CAM increased cell proliferation compared to CDDP used alone. Our data indicate that CAM and CDDP used in combination produce antagonistic interaction, which could inhibit anti-cancer treatment efficacy, showing importance of preclinical testing.


Assuntos
Neoplasias da Mama/tratamento farmacológico , Cisplatino , Antagonismo de Drogas , Inibidores de Histona Desacetilases/farmacologia , Modelos Biológicos , Naftalenos , Pirimidinonas , Apoptose/efeitos dos fármacos , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Ciclo Celular/efeitos dos fármacos , Cisplatino/antagonistas & inibidores , Cisplatino/farmacologia , Feminino , Humanos , Células MCF-7 , Naftalenos/antagonistas & inibidores , Naftalenos/farmacologia , Pirimidinonas/antagonistas & inibidores , Pirimidinonas/farmacologia
20.
Pharmacol Rep ; 73(6): 1485-1496, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34264513

RESUMO

Melanoma is one of the most aggressive malignances in human. Recently developed therapies improved overall survival rate, however, the treatment of melanoma still remains a challenging issue. This review attempts to summarize recent advances in studies on cannabinoids used in the setting of melanoma treatment. Searches were carried out in PubMed, Google Scholar, Scopus, Research Gate. Conclusions after analysis of available data suggest that cannabinoids limit number of metastasis, and reduce growth of melanoma. The findings indicate that cannabinoids induce apoptosis, necrosis, autophagy, cell cycle arrest and exert significant interactions with tumor microenvironment. Cannabinoids should be rather considered as a part of multi-targeted anti-tumor therapy instead of being standalone agent. Moreover, cannabinoids are likely to improve quality of life in patients with cancer, due to different supportive effects, like analgesia and/or anti-emetic effects. In this review, it was pointed out that cannabinoids may be potentially useful in the melanoma therapy. Nevertheless, due to limited amount of data, great variety of cannabinoids available and lack of clinical trials, further studies are required to determine an exact role of cannabinoids in the treatment of melanoma.


Assuntos
Antineoplásicos Fitogênicos/farmacologia , Canabinoides/farmacologia , Melanoma/tratamento farmacológico , Animais , Apoptose/efeitos dos fármacos , Autofagia/efeitos dos fármacos , Humanos , Melanoma/patologia , Qualidade de Vida , Neoplasias Cutâneas/tratamento farmacológico , Neoplasias Cutâneas/patologia , Microambiente Tumoral/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...